Top.Mail.Ru

Точная координация в тесном пространстве: учёные разработали новейший алгоритм для медицинских роборук

Российские ученые представили универсальный алгоритм для координации движений манипуляторов в медицинских роботических системах для исключения столкновений в ограниченном пространстве. Алгоритм анализирует рабочую зону, определяет ограничения, связанные с совместной работой внутри системы, адаптирует траекторию и оптимизирует движения для увеличения эффективности.

В медицинских лабораториях для повышения производительности используются роботические системы, объединяющие несколько манипуляторов, которые одновременно совершают различные операции с несколькими пробирками. Специалистам нужно заранее определить, какие операции — последовательные или параллельные — закрепляются за каждым устройством, и затем запустить работу роборук с разной конструкцией — звеньями, приводными механизмами, программным управлением — так, чтобы они не сталкивались между собой в ограниченном пространстве.

Существующие алгоритмы робототехнических систем преимущественно выполняют координационную задачу через датчики, работающие в реальном времени. Учёные из СТИ НИТУ МИСИС, ФИЦ ИУ РАН и БГТУ им. В. Г. Шухова предложили методику, по которой можно заранее рассчитывать зоны и траектории, чтобы автоматизированные комплексы планировали действия без лишних остановок, перенастроек и столкновений.

«Мы разработали специальные алгоритмы, которые позволяют коллаборативным роботам точно двигаться в ограниченном пространстве. Эти программы заранее рассчитывают, где и как каждый манипулятор должен двигаться, чтобы выполнить свою задачу наиболее эффективно. Внимание мы заострили на построении „зон безопасной работы“ — невидимых границ в пространстве, внутри которых нет риска столкновений», — сказал к.т.н. Сергей Халапян, доцент кафедры автоматизированных и информационных систем управления СТИ НИТУ МИСИС.

С помощью компьютерных моделей исследователи рассчитали, как именно могут безопасно двигаться два манипулятора: один дозирует жидкость, другой подаёт пробирки. В расчётах учитывали все элементы окружения. Ошибки при движении были меньше миллиметра по горизонтали и не превышали 0,2 мм по вертикали. С подробными результатами исследования можно ознакомиться в научном журнале Machines (Q2).

«Наши алгоритм подходят для разных типов манипуляторов. На этапе моделирования мы рассчитали рабочие области и безопасные зоны движения. Также мы протестировали систему, которая автоматически меняет точку встречи роботов при аликвотировании биоматериалов в зависимости от контекста окружения и их индивидуальной нагрузки», — поделился научный сотрудник кафедры автоматизированных и информационных систем управления СТИ НИТУ МИСИС Владислав Воробьёв.

Учёные также реализовали систему автоматического смещения точки взаимодействия в зависимости от загрузки каждого манипулятора, что позволяет сократить общее время выполнения цикла.

д.э.н. Александр Мясков, директор Горного института НИТУ МИСИС, заслуженный эколог Россиид.э.н. Александр Мясков, директор Горного института НИТУ МИСИС, заслуженный эколог России
Делегация НИТУ МИСИС в средней школы № 1 городского округа ОрдосДелегация НИТУ МИСИС в средней школы № 1 городского округа Ордос
В НИТУ МИСИС разработали инновационный гель для борьбы с кариесомВ НИТУ МИСИС разработали инновационный гель для борьбы с кариесом